Topic Archives: Industries

Paid Leave Benefits When You Are Unable to Work

Many American workers have lost jobs or had their work hours reduced as a result of the COVID-19 pandemic and response efforts. Many other workers still have jobs, but their work environment probably has changed since March. It’s reasonable to assume more people are working from home now than the 29 percent we reported who could work at home in 2017–18. At BLS we are still working to provide you with the latest economic data and analysis, but nearly all of us are now working from home, instead of in our offices.

Still, there are many jobs that just can’t be done from home. In these challenging times, I know we all are grateful for the healthcare workers who are treating patients who have COVID-19 and other medical conditions. We’re grateful for our emergency responders and for the truck drivers, warehouse workers, delivery workers, and staff in grocery stores, pharmacies, and other retail establishments that provide us with the necessities of daily life. As much as I think of these men and women as superheroes, I know they are humans. Even extraordinary humans can get sick, or they may need to take care of family members who get sick. Let’s look at the leave benefits available to them if they need it.

According to our National Compensation Survey, 73 percent of private industry workers were covered by paid sick leave in 2019. Among state and local government workers, 91 percent were covered by paid sick leave. The availability of sick leave benefits varied by occupation, ranging from 94 percent of managers in private industry to 56 percent of workers in construction and extraction occupations.

The share with paid sick leave also varies by industry, pay level, size of establishment, and other characteristics of jobs and employers. The following chart shows sick leave availability for employers of different sizes.

Percent of workers in private industry with access to paid sick leave by establishment size, March 2019

Editor’s note: Data for this chart are available in the table below.

Paid sick leave plans commonly provide a fixed number of days per year. The number of days may vary by the worker’s length of service with the employer. The average in private industry in 2019 was 7 paid sick leave days.

Average number of paid sick leave days per year for workers in private industry, by length of service and establishment size, March 2019

Editor’s note: Data for this chart are available in the table below.

About half of workers with such a plan could carry over unused days from year to year.

We recently posted a new fact sheet on paid sick leave that provides even more detail.

In the past few years, some states and cities have mandated that certain employers provide their workers with paid sick leave. We include these mandated plans in our data on paid leave. A Federal law passed in March 2020 requires paid sick leave for certain workers affected by COVID-19.

In addition to paid sick leave, some employers offer a short-term disability insurance plan when employees can’t work because of illness. These plans are sometimes called sickness and accident insurance plans. This was traditionally a blue-collar or union benefit, and it often replaces only a portion of an employee’s pay. In 2019, 42 percent of private industry workers had access to such a benefit. Like sick leave, the availability of short-term disability benefits varies widely across worker groups. Some states provide Temporary Disability Insurance plans that provide similar benefits.

While the National Compensation Survey asks employers what benefits they offer to workers, the American Time Use Survey recently asked workers whether paid leave is available from their employer and whether they used it. In 2017–18, two-thirds of workers had access to paid leave at their jobs. These data include information on age, sex, and other characteristics. For example, younger workers (ages 15–24) and older workers (age 65 and older) were less likely to have access to paid leave than were other workers.

Percent of workers with access to paid leave by age, 2017–18 averages

Editor’s note: Data for this chart are available in the table below.

While the survey did not ask workers to classify the type of leave, they were asked the reasons they could take leave. Of those with paid leave available, 94 percent could use it for their own illness or medical care, and 78 percent could use it for the illness or medical care of another family member.

I hope you and your loved ones remain healthy and are able to take care of each other in these challenging times. High-quality data will be vital in the public health response to the COVID-19 pandemic. High-quality data also will be vital for measuring the economic impact of the pandemic and recovery from it. My colleagues at BLS and our fellow U.S. statistical agencies remain on the job to provide you with gold standard data.

Percent of workers in private industry with access to paid sick leave by establishment size, March 2019
Establishment sizePercent

1–49 workers

64%

50–99 workers

68

100–499 workers

80

500 workers or more

89
Average number of paid sick leave days per year for workers in private industry, by length of service and establishment size, March 2019
Length of serviceAll establishments 1 to 49 workers50 to 99 workers100 to 499 workers500 workers or more

After 1 year

76678

After 5 years

77679

After 10 years

77779

After 20 years

77779
Percent of workers with access to paid leave by age, 2017–18 averages
AgePercent

Ages 15–24

35.4%

Ages 25–34

70.3

Ages 35–44

71.7

Ages 45–54

74.4

Ages 55–64

74.2

Age 65 and older

51.7

Ensuring Security and Fairness in the Release of Economic Statistics

The U.S. Bureau of Labor Statistics is the gold standard of accurate, objective, relevant, timely, and accessible statistical data, and I am committed to keeping it that way. As Commissioner, it is my obligation to do everything possible to protect the integrity of our data and to make sure everyone has equitable access to these data.

One step toward equitable access and data security is coming soon; on March 1, 2020, the U.S. Department of Labor (DOL) will eliminate all electronics from the lock-up facility where we allow members of the media to review economic releases and prepare news stories before the official release of the data. We are changing the procedures to better protect our statistical information from premature disclosure and to ensure fairness in providing our information to the public.

For many years the news media have helped BLS and the Employment and Training Administration (ETA) inform the public about our data. Since the mid-1980s, BLS and ETA have provided prerelease data access to news organizations under strict embargoes, known as “lock-ups.” We have provided this early access consistent with federal Statistical Policy Directives of the Office of Management and Budget. BLS uses the lock-up for several major releases each month, including the Employment Situation and Consumer Price Index. ETA uses the lock-up for the Unemployment Insurance Weekly Claims data. These economic data have significant commercial value and may affect the movement of commodity and financial markets upon release.

Because of technological advancements, the current lock-up procedure creates an unfair competitive advantage for lock-up participants who provide BLS data to trading companies. Today, the internet permits anyone in the world to obtain economic releases for themselves directly from the BLS or DOL websites. However, unlike media organizations with computer access in the current lock-up, others who use the data do not have up to 30 minutes before the official release to process the data. Their postings about the data may lag behind those released directly from the lock-up at official publication time, 8:30 a.m. Eastern. High-speed algorithmic trading technology now gives a notable competitive advantage to market participants who have even a few microseconds head start. To eliminate this advantage and further protect our data from inadvertent or purposeful prerelease, no computers or any other electronic devices will be allowed in the lock-up.

In recent years, BLS and ETA have devoted significant resources to introducing improved technologies that strengthen our infrastructure and ensure data are posted to the BLS or DOL websites immediately following the official release time.

We at BLS and ETA are committed to the principle of a level playing field—our data must be made available to all users at the same time. We are equally committed to protecting our data. We are now positioned to continue helping the media produce accurate stories about the data, while also ensuring that all parties, including the media, businesses, and the general public, will have equitable and timely access to our most sensitive data.

You can find more details about these changes in our notice to lock-up participants. We also have a set of questions and answers about the changes to the lock-up procedures.

Why This Counts: Measuring Industry Productivity

At BLS, productivity is the economic statistic that describes the efficiency of production. The productivity statistics you hear about most often in the news are for the entire U.S. economy. But there’s more to the productivity story than just the overall numbers. The economy is made up of hundreds of industries, and each one works in a different way. Productivity data for each industry help us understand how specific types of production have changed over time. Let’s look at a few specific industries to see how labor productivity data can enhance our understanding of their unique production systems.

General Freight Trucking: Technological Innovations

Economic conditions in the general freight trucking industry closely mirror the health of the overall economy. During the 2007–09 recession, both output and hours worked fell dramatically in trucking. Because employment and spending were down nationwide, there was less demand for the transportation of all kinds of goods. After the recession ended, output and hours in trucking picked back up. Output reached prerecession levels by 2014, but in 2018 hours worked were still slightly below their 2007 level.

Dividing output by hours worked yields labor productivity. Because output in trucking has grown faster than hours during the recovery from the recession, labor productivity has increased. This helps us understand the nature of operations in general freight trucking. Innovative technologies such as communications systems, mapping software, and truck-based sensors and monitors known as “telematics” have improved transportation efficiency. These systems allow deliveries to be planned more efficiently with fewer delays, allowing more freight to be delivered without an equivalent increase in worker hours.

General freight trucking, average yearly percent change in output, hours worked, and productivity from 2007 to 2018

Editor’s note: Data for this chart are available in the table below.

Travel Agencies: Digital Transformation

Another industry that has changed the way it operates is travel agencies. Since 2000, output has increased substantially, while hours fell from 2000 to 2010 and have increased only slightly since then. The major transformation for travel agencies has been the Internet. Online tools have allowed clients to make travel reservations with far less help from workers. This increase in efficiency is reflected in the industry’s labor productivity, which has more than tripled from 2000 to 2017.

Travel agencies, average yearly percent change in output, hours worked, and productivity from 2000 to 2017

Editor’s note: Data for this chart are available in the table below.

Supermarkets: Incremental Change

Changes in other industries have been more subtle. Supermarkets are a particularly competitive industry, and firms employ a large number of workers to maintain high levels of customer service. Managing inventories, stocking shelves, checking out merchandise, and staffing specialty stations are all tasks that supermarkets continue to need. But even in supermarkets, productivity has been increasing since 2009, as output has grown faster than worker hours. To continue growing sales with lower costs, many firms in this industry have relied more on labor-saving technology, such as self-checkout machines. This technology increases efficiency by allowing supermarkets to process more transactions with less help from workers.

Supermarkets, average yearly percent change in output, hours worked, and productivity from 2009 to 2018

Editor’s note: Data for this chart are available in the table below.

Cut and Sew Apparel Manufacturing: Establishment Turnover

Productivity declines also can show the changing nature of work. Cut and sew apparel manufacturing has seen much of its production move outside the United States. In 2018, U.S. apparel manufacturers produced less than 15 percent of the output they produced in 1997. Although worker hours also have declined, they have not dropped as much as output, leading to a decline in labor productivity. This indicates a shift over time in the nature of the average apparel manufacturer. While many large establishments moved overseas in search of cheaper labor, the remaining domestic apparel manufacturing establishments are on average smaller and more specialized, requiring more labor-intensive work.

Cut and sew apparel manufacturing, average yearly percent change in output, hours worked, and productivity from 1997 to 2018

Editor’s note: Data for this chart are available in the table below.

To Learn More

BLS industry productivity data help us study the efficiencies of economic activities. Historical trends in productivity provide an important window into each industry’s working conditions, competitiveness, contribution to the economy, and potential for future growth. These data are used by investors, business leaders, jobseekers, researchers, and government decision makers. We have annual labor productivity measures for over 275 detailed industries.

To dive into the data for yourself, check out the BLS webpages on labor productivity. You also can see productivity data in a brand new way using our industry productivity viewer! Even more specialized industry data are on our webpages for hospitals, construction industries, elementary and secondary schools, and urban transit systems. We also have a recent article on productivity in grocery stores.

Average yearly percent change in output, hours worked, and productivity in selected industries
IndustryOutputHours workedProductivity

General freight trucking, 2007 to 2018

1.0%-0.1%1.2%

Travel agencies, 2000 to 2017

4.8-3.08.1

Supermarkets, 2009 to 2018

1.90.71.2

Cut and sew apparel manufacturing, 1997 to 2018

-9.4-7.5-2.1

New Data on Employment and Wages in U.S. Establishments with Foreign Ownership

Did you know that U.S. establishments at least partially owned by foreign companies employed 5.5 million U.S. workers in 2012? That was 5.0 percent of U.S. private-sector employment. The U.S. Bureau of Labor Statistics recently partnered with the Bureau of Economic Analysis to produce new data on foreign direct investment in the United States. These two agencies created a new, richer dataset on employment, wages, and occupations in U.S. establishments that have at least one foreign owner.

So how do we define foreign direct investment anyway? In the simplest sense, it is when a U.S. establishment has an owner from another country with at least a 10-percent stake. We consider any establishment that does not meet this threshold as domestically owned. The new data are more detailed than any data previously available on foreign direct investment in the United States. This first set of data is for 2012, but the agencies plan to work together to produce more recent data soon.

Nearly two-thirds of jobs in establishments with foreign ownership had European ownership (3.5 million jobs). The United Kingdom accounted for 874,000 of these jobs. Asia accounted for 17 percent (936,000 jobs) of jobs in U.S. establishments with foreign ownership. Canada accounted for 12 percent (671,000 jobs). The remaining world regions together accounted for less than 8 percent.

Now let’s look at how employment in establishments with foreign ownership breaks down within the United States. The map below shows the percent of private employment in establishments with foreign ownership in each state. South Carolina had the largest share of private employment in establishments with foreign ownership, 8.0 percent. Other states with large shares include New Hampshire, Michigan, Connecticut, New Jersey, and Indiana.

Map showing  each state's percent of private employment in establishments with foreign ownership, 2012

Editor’s note: Data for this map are available in the table below.

Each state’s percent of employment in establishments with foreign ownership depends in part on the industry mix in the state. The chart below shows the percent of each industry’s employment in establishments with foreign ownership. In mining, quarrying, and oil and gas extraction, 14.7 percent of employment is in establishments with foreign ownership. A large share of employment in Alaska is in this industry. Alaska’s share of employment in establishments with foreign ownership, 5.7 percent, is above the national average. Alaska’s vast energy resources may play a role in its share of employment in establishments with foreign ownership.

About 13.2 percent of all employees in manufacturing work in establishments with foreign ownership. Michigan has a large share of employment in manufacturing, and also a large share of employment in establishments with foreign ownership.

Chart showing percent of private employment in establishments with foreign ownership, by industry, 2012

Editor’s note: Data for this chart are available in the table below.

Now let’s turn from employment to wages. The map below shows how wages in establishments with foreign ownership compare with wages in domestically owned establishments across the country. We make this comparison by calculating the ratio of what workers make in average wages in establishments with foreign ownership compared to the average wage in domestically owned establishments. Wage ratios greater than one mean the average for establishments with foreign ownership is higher than for domestically owned establishments. The U.S. wage ratio in 2012 was 1.57, and every state had a wage ratio greater than one. The highest wage ratio was in New York, at 1.98. At the other end of the spectrum, Vermont had a wage ratio of 1.05.

Map showing each state's ratio of average wages in establishments with foreign ownership to domestically owned establishments, 2012

Editor’s note: Data for this map are available in the table below.

Does this mean every establishment with foreign ownership pays higher wages than domestically owned establishments? Let’s analyze wage ratios by industry. We see that the health care and social assistance industry had a wage ratio of 0.86 in 2012. All other major industry groups had wage ratios of 1.00 or higher. The finance and insurance industry had a wage ratio of 1.82.

Want to know more about these data? See our Spotlight on Statistics, “A look at employment and wages in U.S. establishments with foreign ownership.”

Chart showing ratio of average wages in establishments with foreign ownership to domestically owned establishments, by industry, 2012

Editor’s note: Data for this chart are available in the table below.

BLS and the Bureau of Economic Analysis hope to continue this interagency collaboration. Our goal is to merge and analyze more recent data from both agencies. When agencies work together to produce new datasets with little increase in cost to the public, all data users benefit. Producing accurate, objective, relevant, timely, and accessible products is the BLS mission. This collaboration to produce new relevant data allows us to improve our service to the American people.

Percent of private employment in establishments with foreign ownership, 2012
StateEmployment share

National

5.0%

Alabama

5.4

Alaska

5.7

Arizona

3.9

Arkansas

4.5

California

4.2

Colorado

4.6

Connecticut

6.5

Delaware

6.0

District of Columbia

3.4

Florida

3.6

Georgia

5.5

Hawaii

6.0

Idaho

2.9

Illinois

5.1

Indiana

6.4

Iowa

4.0

Kansas

5.7

Kentucky

6.2

Louisiana

3.9

Maine

6.1

Maryland

4.7

Massachusetts

6.3

Michigan

6.6

Minnesota

4.0

Mississippi

3.4

Missouri

4.0

Montana

1.8

Nebraska

3.6

Nevada

3.8

New Hampshire

6.9

New Jersey

6.5

New Mexico

3.0

New York

5.8

North Carolina

6.2

North Dakota

3.8

Ohio

5.3

Oklahoma

3.6

Oregon

3.4

Pennsylvania

5.5

Rhode Island

6.1

South Carolina

8.0

South Dakota

2.1

Tennessee

5.5

Texas

5.3

Utah

4.0

Vermont

3.7

Virginia

5.1

Washington

4.0

West Virginia

4.8

Wisconsin

3.5

Wyoming

3.8
Percent of private employment in establishments with foreign ownership, by industry, 2012
IndustryEmployment share

Mining, quarrying, and oil and gas extraction

14.7%

Manufacturing

13.2

Management of companies and enterprises

9.6

Wholesale trade

9.0

Information

7.8

Finance and insurance

7.5

Utilities

7.3

Transportation and warehousing

6.3

Administrative and waste services

6.0

Professional, scientific, and technical services

5.5

Total private

5.0

Retail trade

4.7

Real estate and rental and leasing

2.2

Construction

1.8

Accommodation and food services

1.6

Other services (except public administration)

1.3

Agriculture, forestry, fishing, and hunting

1.0

Health care and social assistance

0.9

Arts, entertainment, and recreation

0.7

Educational services

0.6
Ratio of average wages in establishments with foreign ownership to domestically owned establishments, 2012
StateWage ratio

National

1.57

Alabama

1.44

Alaska

1.63

Arizona

1.28

Arkansas

1.43

California

1.49

Colorado

1.53

Connecticut

1.53

Delaware

1.78

District of Columbia

1.08

Florida

1.52

Georgia

1.36

Hawaii

1.06

Idaho

1.30

Illinois

1.61

Indiana

1.56

Iowa

1.48

Kansas

1.56

Kentucky

1.36

Louisiana

1.67

Maine

1.26

Maryland

1.28

Massachusetts

1.46

Michigan

1.84

Minnesota

1.50

Mississippi

1.63

Missouri

1.55

Montana

1.63

Nebraska

1.35

Nevada

1.47

New Hampshire

1.39

New Jersey

1.64

New Mexico

1.22

New York

1.98

North Carolina

1.47

North Dakota

1.55

Ohio

1.49

Oklahoma

1.40

Oregon

1.41

Pennsylvania

1.43

Rhode Island

1.31

South Carolina

1.43

South Dakota

1.45

Tennessee

1.42

Texas

1.80

Utah

1.45

Vermont

1.05

Virginia

1.23

Washington

1.40

West Virginia

1.33

Wisconsin

1.38

Wyoming

1.72
Ratio of average wages in establishments with foreign ownership to domestically owned establishments, by industry, 2012
IndustryWage ratio

Finance and insurance

1.82

Construction

1.62

Total private

1.57

Accommodation and food services

1.51

Real estate and rental and leasing

1.50

Arts, entertainment, and recreation

1.45

Other services (except public administration)

1.44

Agriculture, forestry, fishing, and hunting

1.40

Wholesale trade

1.39

Professional, scientific, and technical services

1.39

Mining, quarrying, and oil and gas extraction

1.28

Management of companies and enterprises

1.23

Retail trade

1.20

Educational services

1.19

Manufacturing

1.18

Utilities

1.15

Administrative and waste services

1.13

Information

1.05

Transportation and warehousing

1.00

Health care and social assistance

0.86

BLS Learns from Civic Digital Fellows

In the few months that I’ve had the pleasure of occupying the Commissioner’s seat at the Bureau of Labor Statistics, it’s been clear that I’m surrounded by a smart, dedicated, and innovative staff who collect and publish high-quality information while working to improve our products and services to meet the needs of customers today and tomorrow. And soon after I arrived, we added to that high-quality staff by welcoming a cadre of Civic Digital Fellows to join us for the summer.

In its third year, the Civic Digital Fellowship program was designed by college students for college students who wanted to put their data science skills to use helping federal agencies solve problems, introduce innovations, and modernize functions. This year, the program brought 55 fellows to DC and placed them in 6 agencies – Census Bureau, Citizenship and Immigration Service, General Services Administration, Health and Human Services, National Institutes of Health, and BLS. From their website:

Civic Digital Fellowship logo describing the program as "A first-of-its-kind technology, data science, and design internship program for innovative students to solve pressing problems in federal agencies."

BLS hosted 9 Civic Digital Fellows for summer 2019. Here are some of their activities.

  • Classification of data is a big job at BLS. Almost all of our statistics are grouped by some classification system, such as industry, occupation, product code, or type of workplace injury. Often the source data for this information is unstructured text, which must then be translated into codes. This can be a tedious, manual task, but not for Civic Digital Fellows. Andres worked on a machine learning project that took employer files and classified detailed product names (such as cereal, meat, and milk from a grocery store) into categories used in the Producer Price Index. Vinesh took employer payroll listings with very specific job titles and identified occupational classifications used in the Occupational Employment Statistics program. And Michell used machine learning to translate purchases recorded by households in the Consumer Expenditure Diary Survey into codes for specific goods and services.
  • We are always looking to improve the experience of customers who use BLS information, and the Civic Digital Fellows provided a leg up on some of those activities. Daniel used R and Python to create a dashboard that pulled together customer experience information, including phone calls and emails, internet page views, social media comments, and responses to satisfaction surveys. Olivia used natural language processing to develop a text generation application to automatically write text for BLS news releases. Her system expands on previous efforts by identifying and describing trends in data over time.
  • BLS staff spend a lot of time reviewing data before the information ends up being published. While such review is more automated than in the past, the Civic Digital Fellows showed us some techniques that can revolutionize the process. Avena used Random Forest techniques to help determine which individual prices collected for the Consumer Price Index may need additional review.
  • Finally, BLS is always on the lookout for additional sources of data, to provide new products and services, improve quality, or reduce burden on respondents (employers and households). Christina experimented with unit value data to determine the effect on export price movements in the International Price Program. Somya and Rebecca worked on separate projects that both used external data sources to improve and expand autocoding within the Occupational Requirements Survey. Somya looked at data from a private vendor to help classify jobs, while Rebecca looked at data from a government source to help classify work tasks.

The Civic Digital Fellows who worked at BLS in summer 2019

Our cadre of fellows has completed their work at BLS, with some entering grad school and the working world. But they left a lasting legacy. They’ve gotten some publicity for their efforts. Following their well-attended “demo day” in the lobby at BLS headquarters, some of their presentations and computer programs are available to the world on GitHub.

I think what most impressed me about this impressive bunch of fellows was the way they grasped the issues facing BLS and focused their work on making improvements. I will paraphrase one fellow who said “I don’t want to just do machine learning. I want to apply my skills to solve a problem.” Another heaped praise on BLS supervisors for “letting her run” with a project with few constraints. We are following up on all of the summer projects and have plans for further research and implementation.

We ended the summer by providing the fellows with some information about federal job opportunities. I have no doubt that these bright young minds will have many opportunities, but I also saw an interest in putting their skills to work on real issues facing government agencies like BLS. I look forward to seeing them shine, whether at BLS or wherever they end up. I know they will be successful.

And, we are already making plans to host another group of Civic Digital Fellows next summer.